Aplicaciones y funciones

Aplicaciones y funciones. El carácter abstracto y complejo del razonamiento matemático ha llevado a menudo a plantear argumentaciones aparentemente contradictorias que alimentan un extenso repertorio de curiosidades matemáticas. Uno de ellos es la denominada paradoja de Galileo. En Dos nuevas ciencias, trabajo postrero en la vida de este sabio del siglo XVII, se plantea una afirmación paradójica dentro del conjunto de los números enteros. Como ya se sabe, algunos enteros son cuadrados perfectos, como 4, 9, 16, 25, 36, etc. Ello significaría que el conjunto de los números cuadrados es menor en número de elementos que el de los números enteros, que los incluye a ellos pero también a los no cuadrados. Sin embargo, por cada número cuadrado existe un número entero que es su raíz cuadrada (por ejemplo, 4 es cuadrado de 2, 9 de 3, etc.), y por cada entero hay exactamente un cuadrado. Ello significaría que no debería haber mayor número de unos que de otros, en una asociación entre...